二年级数学知识点总结
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它能够给人努力工作的动力,因此好好准备一份总结吧。我们该怎么写总结呢?下面是小编精心整理的二年级数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
二年级数学知识点总结11.平均分的含义:把一些物品分成几份,每份分得同样多,叫做平均分。
除法就是用来解决平均分问题的。
2.平均分里有两种情况:
(1)把一些东西平均分成几份,求每份是多少;用除法计算,
总数÷份数=每份数
(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数
3、除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。
除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
被除数÷除数=商。
被除数÷商=除数
除数×商=被除数。
4.用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
一句口诀可以写四个算式。(乘数相同的除外)。
5、解决问题
解决有关平均分问题的方法:
总数÷每份数=份数总数÷份数=每份数
用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
第三单元图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。(剪纸游戏)
成轴对称图形的字母:
ABCDEHIKMOTUVWXY
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。平移只能上下移动或左右移动。
3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。例如:旋转木马、转动的风扇、转动的车轮等。
二年级数学知识点总结21.表内除法的知识点:
(1)理解平均分的意义。会根据表内乘法,计算简单的除法。
(2)会用乘法口诀求商。
(3)根据乘除法的意义解决一些简单的乘除法应用题。
(4)被除数÷除数=商被除数÷商=除数除数×商=被除数
2.除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
3.除法的性质
一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)
4.除法公式
(1)被除数÷除数=商
(2)被除数÷商=除数
(3)除数×商=被除数
5.被除数
除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数
6.除数:在除法算式中,除号后面的数叫做除数。
例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。
7.商:在一个除法算式里,被除数÷除数=商+余数,进而推导得出:商×除数+余数=被除数。
8.完全商
当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。
9.不完全商
如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3......1,这里的3就是不完全商。
10.被除数和商的关系
被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
11.2—6的乘法口诀
2×2=4
2×3=6 3×3=9
2×4=8 3×4=12 4×4=16
2×5=10 3×5=15 4×5=20 5×5=25
2×6=12 3×6=18 4×6=24 5×6=30 6×6=36
12.直角:几何原本中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。
一个直角等于90度,符号:Rt∠
13.几何中的锐角:大于0°小于90°(直角)的角。
两个锐角相加不一定大于直角,但一定小于平角。
14.钝角:钝角大于直角(90°)小于平角(180°)的角叫做钝角。
15.平移:平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。平移可以不是水平的。
16.旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
17.旋转的性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全相等。
18.旋转的三要素
(1)旋转中心;
(2)旋转方向;
(3)旋转角度。
注意:三要素中只要任意改变一个,图形就会不一样。
旋转变换是由一个图形改变为另一个图形,在改变过程中,原图上所有的点都绕一个固定的点换同一方向,转动同一个角度
19.表内除法的知识点:
(1)理解平均分的意义。会根据表内乘法,计算简单的除法。
(2)会用乘法口诀求商。
(3)根据乘除法的意义解决一些简单的乘除法应用题。
(4)被除数÷除数=商被除数÷商=除数除数×商=被除数
20.7、8、9的乘法口诀
7×7=49
7×8=56 8×8=64
7×9=63 8×9=72 9×9=81
21.万以内的数的认识
100=10个10(10个10相加的结果等于100)
1000=10个100(10个100相加的 ……此处隐藏18055个字……:多边形的外角和为度.
⑸多边形对角线的条数:
①从n边形的一个顶点出发可以引条对角线,把多边形分成个三角形.
②n边形共有条对角线.
第十二章全等三角形
一、知识框架:
二、知识概念:
1.基本定义:
⑴全等形:能够完全的两个图形叫做全等形.
⑵全等三角形:能够完全的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相的顶点叫做对应顶点.
⑷对应边:全等三角形中互相的边叫做对应边.
⑸对应角:全等三角形中互相的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的相等,对应角相等.
3.全等三角形的判定定理:
⑴边边边(SSS):。
⑵边角边(SAS):。
⑶角边角(ASA):。
⑷角角边(AAS):。
⑸斜边、直角边(HL):。
4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的上.
5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且这条线段的直线,叫做这条线段的垂直平分线.
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
⑸等边三角形:都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段的距离相等.②与一条线段两个端点距离相等的点在这条线段的上.⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P"(,).②点P(x,y)关于y轴对称的点的坐标为P"(,).⑷等腰三角形的性质:
①等腰三角形两腰.
②等腰三角形两底角相等(等边对等角).
③等腰三角形的、,相互重合.④等腰三角形是图形,对称轴是三线合一(1条).⑸等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于度。③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:
⑴等腰三角形的判定:
①相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也(等角对等边).
⑵等边三角形的判定:
①都相等的三角形是等边三角形.②三个角都相等的三角形是三角形.
③有一个角是度。的等腰三角形是等边三角形.
4.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.
第十四章整式的乘除与分解因式
一、知识框架:
整式乘法乘法法则整式除法因式分解
二、知识概念:
基本运算:⑴同底数幂的乘法公式:。⑵幂的乘方公式:。⑶积的乘方公式:。
2.整式的乘法:⑴单项式单项式:系数,同字母,不同字母为积的因式.⑵单项式多项式:。⑶多项式多项式:.
3.计算公式:
⑴平方差公式:ababab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
⑴同底数幂的除法:aaamnmn
⑵单项式单项式:系数,同字母,不同字母作为商的因式.⑶多项式单项式:.⑷多项式多项式:用竖式.
5.因式分解:把一个多项式化成的积的形式,这种变形叫做把这个式子因式分解.
6.因式分解方法:
⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆项法⑸添项法第十五章分式一、知识框架:
二、知识概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意义的条件:分母不等于.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为的整式,分式的值不变.4.约分:把一个分式的分子和分母的(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成的分式,这一过程叫做通分.
6.最简分式:一个分式的分子和分母没有时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:
⑴同分母分式加减法则:同分母的分式相加减,分母,把相加减.用字
母表示
为:。
⑵异分母分式加减法则:异分母的分式相加减,先,化为同分母的分
式,然后再按同分母分式的加减法法则进行计算.用字母表示为:。
⑶分式的乘法法则:两个分式相乘,把相乘的积作为积的分子,把相乘的积作为积的分母.用字母表示为:。
⑷分式的除法法则:两个分式相除,把除式的和颠倒位置后再与被除式相乘.用字母表示为:。⑸分式的乘方法则:、分别乘方.用字母表示为:。8.整数指数幂:⑴aaam⑵amnmn(m、n是正整数)namn(m、n是正整数)nn⑶abab(n是正整数)n⑷aaanmnmn(a0,m、n是正整数,mn)ana⑸n(n是正整数)bb⑹an1(a0,n是正整数)na9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:
①(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;
③(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
文档为doc格式